The generator matrix

 1  0  0  1  1  1  1  1  1  1  6  1 X+6  1  1  1  X  1  1  1  1  X 2X+6 X+6  1  1  3  1  1  1 X+3  6  1  1  1  0  1  1 2X+6  1  1  1  1  0  X  1 2X+3  1  1  1  1  0  3  1 X+6  1  1  1  1  1 2X+6  6  1 X+3  1  1 2X 2X+3  1  1  1  1  1  1  1  1  1 2X  1 X+6  1  1  1  1 X+6  1  1  1  1 2X+3 2X+3  1
 0  1  0  0  3 2X+7 2X+1 X+8 X+7 X+2  1  8  1 X+6 2X+5 2X+7  1 2X+8 2X+1  4  6  1  1 2X+6 2X+8 2X X+3  8 X+5 X+3  1  1 2X+2 2X+4 X+6  1 X+7  3  1 X+1 X+8 2X 2X+5  1  1 X+2 X+3  7  8  1  4  1 2X+3 X+6  1 X+3  2  1  1 2X+6  1  1  6  1 2X+7 2X+3  1  3 2X+3  2  0 X+1 2X+5  8 2X+5 2X+4  0  1  X  1 X+2 X+7  7  5 2X+3 2X+2 X+8 X+5  8  1 X+3 X+1
 0  0  1 2X+7  5  2 2X+1 X+3 X+6 X+5  7 X+1 2X+5  6 2X+7 2X+3  1 2X 2X+5 2X+1  4  0 X+5  1 X+8 X+5  1 X+6  5 X+1 X+4 X+5 X+7  0 X+5 X+3  8 2X+3 2X+7 X+4 2X+6  6  7  8 2X+6 2X+8  1 2X+3 2X+1  7 X+2 2X+7  1 X+6 X+5 2X+1  7  0  2  1  4 X+8  5  2 X+1  4  3  1 X+4  2  X 2X+4 X+8 2X 2X  4 X+2 X+1  X  X  X 2X+3  X 2X+5  1  8 2X+7 2X+1 X+1 X+4  1  0
 0  0  0  6  6  6  6  6  6  6  0  6  0  6  3  0  3  0  3  3  0  6  6  6  3  3  3  3  0  3  6  3  0  3  0  3  0  3  0  0  3  6  3  6  6  0  6  3  0  0  0  6  0  3  3  0  6  0  6  3  3  6  3  0  6  6  6  3  3  0  0  6  6  3  6  3  6  3  6  3  0  6  3  3  3  3  0  6  3  6  0  0

generates a code of length 92 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 175.

Homogenous weight enumerator: w(x)=1x^0+660x^175+1224x^176+1740x^177+3174x^178+3852x^179+3142x^180+4950x^181+4902x^182+3872x^183+4968x^184+5280x^185+3556x^186+4290x^187+3762x^188+2354x^189+2814x^190+1794x^191+910x^192+786x^193+540x^194+168x^195+174x^196+38x^198+30x^199+18x^200+6x^201+12x^202+6x^203+8x^204+12x^205+6x^212

The gray image is a code over GF(3) with n=828, k=10 and d=525.
This code was found by Heurico 1.16 in 11 seconds.